Lý thuyết: Diện tích hình phẳng

Đăng bởi Hoanglien vào

•Trường hợp 1: Diện tích hình phẳng giới hạn bởi đồ thị \(y=f\left(x\right)\), trục Ox và hai đường thẳng \(x=a;x=b\)

   

     \(S=\int^b_a\left|f\left(x\right)\right|dx\)

Bài tập luyện tập: 

[HDquiz quiz = "526"] 

• Trường hợp 2:Diện tích hình phẳng giới hạn bởi đồ thị \(y=f\left(x\right)\), \(y=g\left(x\right)\) và hai đường thẳng \(x=a;x=b\) là 

        

\(S=\int\limits^b_a\left|f\left(x\right)-g\left(x\right)\right|dx\)

Giả sử  x1;x2;…;xn lần lượt là các nghiệm của phương trình f(x)=g(x) thuộc (a;b). Khi đó:

\(S=\int\limits^b_a\left|f\left(x\right)-g\left(x\right)\right|dx\)

$ = \int\limits_a^{{x_1}} {\left| {f\left( x \right) – g\left( x \right)} \right|} dx + \int\limits_{{x_1}}^{{x_2}} {\left| {f\left( x \right) – g\left( x \right)} \right|} dx + … + \int\limits_{{x_n}}^b {\left| {f\left( x \right) – g\left( x \right)} \right|} dx$

• Trường hợp 3:  Diện tích hình phẳng giới hạn bởi đồ thị y=f(x) và y=g(x) cắt nhau.

Giả sử tại hai điểm A, B có hoành độ x1;x2 là nghiệm của phương trình: f(x)=g(x). Khi đó, diện tích hình phẳng là:

$S = \int\limits_{{x_1}}^{{x_2}} {\left| {f\left( x \right) – g\left( x \right)} \right|} dx$

•Trường hợp 4: Diện tích hình phẳng giới hạn bởi đồ thị x = f(y), x = g(y) và hai đường thẳng \(y=a;y=b\) .

     \(S=\int^b_a\left|f\left(y\right)-g\left(y\right)\right|dy\)  

Ví dụ: Tính diện tích hình phẳng giới hạn bởi hai đường cong \(y=x^3-x\) và \(y=x-x^2\)

Giải: Ta xét hiệu hai hàm \(f_1\left(x\right)=x^3-x\) và \(f_2\left(x\right)=x-x^2\) là:

    \(f_1\left(x\right)-f_2\left(x\right)=x^3+x^2-2x=x\left(x^2+x-2\right)=x\left(x-1\right)\left(x+2\right)\)

Ta có \(f_1\left(x\right)-f_2\left(x\right)\) bằng 0 tại 3 điểm có hoành độ là -2; 0; 1. Vậy diện tích hình giới hạn bởi hai đồ thị là:

  \(S=\int\limits^1_{-2}\left|x^3+x^2-2x\right|\text{d}x=\left|\int\limits^0_{-2}\left(x^3+x^2-2x\right)\text{d}x\right|+\left|\int\limits^1_0\left(x^3+x^2-2x\right)\text{d}x\right|\)

     \(=\left|\left(\frac{x^4}{4}+\frac{x^3}{3}-x^2\right)|^0_{-2}\right|+\left|\left(\frac{x^4}{4}+\frac{x^3}{3}-x^2\right)|^1_0\right|\)

    \(=\frac{8}{3}+\frac{5}{12}=\frac{37}{12}\)

Ví dụ 2: Tính diện tích hình phẳng giới hạn bởi \(x=\ln 3;x=\ln 8;y=0;y=\sqrt{e^x+1}\).
ĐS: \(S=2+\ln 3-\ln 2\) (đvdt)
Ví dụ 3: Tính diện tích hình phẳng giới hạn bởi \(y=\ln x; y=0;x=e\).
ĐS: S=1 (đvdt)
Ví dụ 4: Tính diện tích hình phẳng giới hạn bởi \(y=x^3+x^2-2x\) và trục hoành.
ĐS: \(S=\dfrac{37}{12}\) (đvdt)


Xem tiếp: Diên tích giới hạn bởi nhiều đường

Translator-Dịch »